Comparing Digitally and Traditionally Made Ankle Foot Orthoses
About this trial
The research is being done to compare two methods of creating AFOs: 1. The traditional method, which involves manually creating a mold from a plaster cast of the client's limb. This is time-consuming ...
Included participants
What’s involved
Type
Details
This study is designed to compare two methods of creating ankle-foot orthoses (AFOs), which are devices used to support the lower limbs in people with mobility impairments due to conditions like stroke or cerebral palsy. The traditional method involves manually creating a mold from a plaster cast of the patient's limb, which is time-consuming and labor-intensive. The new method uses digital technology, such as 3D scanning and printing, to design and produce the AFOs, potentially making the process faster and less costly. The purpose of the study is to test whether AFOs made using digital technology can provide the same clinical benefits as those made traditionally, but with greater efficiency and at a lower cost. The research will gather data on patient satisfaction, the functionality of the AFOs, and the costs associated with each method. This will help determine if the digital method can be a viable alternative to traditional AFO production, potentially leading to better patient care and reduced healthcare costs. The study poses the overarching research question: Can digitally produced ankle-foot orthoses (AFOs) achieve similar positive clinical outcomes to traditionally fabricated AFOs while being more efficient and cost-effective? The primary objective of this feasibility study is to inform the design of a larger randomized controlled trial (RCT) that will comprehensively address this question.
Potential benefits
Main benefits
Standing/walking/mobility
Additional benefits
General health
Good to know: Potential benefits are defined as outcomes that are being measured during and/or after the trial.
Wings for Life supports SCITrialsFinder
Wings for Life has proudly initiated, led and funded the new version of the SCI Trials Finder website. Wings for Life aims to find a cure for spinal cord injuries. The not-for-profit foundation funds world-class scientific research and clinical trials around the globe.
Learn more- Trial recruitment status
- Recruiting soon
- Trial start date
- 1 Mar 2025
- Organisation
- Holland Bloorview Kids Rehabilitation Hospital
- Trial recruitment status
- Recruiting soon
- Trial start date
- 1 Mar 2025
- Organisation
- Holland Bloorview Kids Rehabilitation Hospital
About this trial
Included participants
What’s involved
Potential benefits
Wings for Life supports SCITrialsFinder
Wings for Life has proudly initiated, led and funded the new version of the SCI Trials Finder website. Wings for Life aims to find a cure for spinal cord injuries. The not-for-profit foundation funds world-class scientific research and clinical trials around the globe.
Learn more