Brain Controlled Spinal Cord Stimulation In Participants With Spinal Cord Injury For Lower Limb Rehabilitation

Surgery
Standing/walking/mobility
Online since 1 March 2024, updated 137 days ago

About this trial

The purpose of this clinical study is to evaluate the preliminary safety and effectiveness of using a cortical recording device (ECoG) combined with lumbar targeted epidural electrical stimulation (EE...

Included participants

Gender
All
Age
18 - 60 years
Injury level
C1 - T10
  • Severity (AIS)?
  • AIS-A
    AIS-B
    AIS-C
    AIS-D
    Time since injury
    ≥ 12 months
  • Injury type
  • Traumatic

    Healthy volunteers
    No
    C1-T10
    Additionally, participants must
    NOT have history of epilepsy
    NOT have previously been injected with stem cells in the spinal cord
    NOT be implanted with a device such as pacemakers or defibrillators

    What’s involved

    Type

    Surgery

    Details

    In a current first-in-human clinical trial, called STIMO (ClinicalTrials.gov, NCT02936453), Electrical Epidural Stimulation (EES) of the spinal cord is applied to enable individuals with chronic severe spinal cord injury (SCI) to complete intensive locomotor neurorehabilitation training. In this clinical feasibility study, EES immediately enhances walking function and, with repeated use as part of the EES-assisted neurorehabilitation program, improves leg motor control and neurological recovery in severe SCI participants to a certain extent. Linking brain activity to spinal stimulation, as shown in preclinical and clinical studies, enhances usability of EES and neurological recovery. Clinatec (CEA, Grenoble, France) has developed an implantable electrocorticogram (ECoG) recording device with a 64-channel epidural electrode array called WIMAGINE capable of recording electrical signals from the motor cortex for an extended period and with a high signal to noise ratio. This ECoG-based system allowed tetraplegic patients to control an exoskeleton (Clinicaltrials.gov, NCT 02550522) with up to 8 degrees of freedom for the upper limb control. This device has been implanted in 5 chronic participants so far; one of them has been using this system both at the hospital and at home for more than 3 years. The ECoG WIMAGINE technology has been combined with EES in the current first-in-human clinical trial STIMO-BSI (Brain Spine Interface) (Clinicaltrials.gov, NTC04632290): with the WIMAGINE technology, cortical motor intentions for leg movements are recorded, and real-time decoding translates brain signals into EES commands. This digital bridge empowered a chronic SCI participant, who has been part of the STIMO clinical trial, to regain leg motor control by volitional fine-tuned EES amplitudes enabling standing, walking and adapting to diverse terrains, demonstrating the efficacy of the BSI. Moreover, BSI-assisted neurorehabilitation mediated neurological improvements after three years of stable performance of the patient, that persisted even when the BSI was switched off. In this study, the investigators will assess the preliminary safety and effectiveness of ECoG-controlled EES in individuals with chronic SCI who have not previously participated in STIMO clinical trial, to establish a direct bridge between the motor intention and the spinal cord below the lesion. This could improve or restore voluntary control of legs movement as well as promote neurological recovery when combined with neurorehabilitation. The WIMAGINE ECoG system will be coupled with the ARC-IM purpose-built spinal cord stimulation technology in the ARC-BSI Lumbar system. An equivalent technology (ARC-BSI Cervical system) is currently used in the ongoing UP2 clinical study (Clinicaltrials.gov, NCT05665998) for upper limb rehabilitation in patients with cervical spinal cord injury.

    Potential benefits

    Main benefits

    Standing/walking/mobility

    Additional benefits

    General health

    Pain

    Spasticity

    Good to know: Potential benefits are defined as outcomes that are being measured during and/or after the trial.

    Wings for Life supports SCITrialsFinder

    Wings for Life has proudly initiated, led and funded the new version of the SCI Trials Finder website. Wings for Life aims to find a cure for spinal cord injuries. The not-for-profit foundation funds world-class scientific research and clinical trials around the globe.

    Learn more

    • Trial recruitment status
    • Recruiting soon
    • Trial start date
    • 1 Mar 2024
    • Organisation
    • Ecole Polytechnique Fédérale de Lausanne
    • Trial recruitment status
    • Recruiting soon
    • Trial start date
    • 1 Mar 2024
    • Organisation
    • Ecole Polytechnique Fédérale de Lausanne

    Wings for Life supports SCITrialsFinder

    Wings for Life has proudly initiated, led and funded the new version of the SCI Trials Finder website. Wings for Life aims to find a cure for spinal cord injuries. The not-for-profit foundation funds world-class scientific research and clinical trials around the globe.

    Learn more