First Report of a New Exoskeleton in Incomplete Spinal Cord Injury

Rehabilitation
Standing/walking/mobility
Online since 19 December 2023, updated 210 days ago

About this trial

The goal of this clinical trial is to compare the effects of exoskeletal robotic therapy and conventional exercise therapy in incomplete spinal cord injury (SCI). The main questions it aims to answer ...

Included participants

Gender
All
Age
≥ 18 years
Injury level
T5 - S5
  • Severity (AIS)?
  • AIS-C
    AIS-D
    Time since injury
    All
    Healthy volunteers
    No
    T5-S5
    Additionally, participants must
    NOT have difference in leg length
    NOT have severe spasticity

    What’s involved

    Type

    Rehabilitation

    Details

    Background: Intensive walking practice is a task that requires performance above the limits of conventional therapy. As a solution, robot-assisted exoskeletons that allow walking on the ground are produced. The exoskeletons can allow the user to perform intense, targeted, and multi-repetitive movements and at the same time provide stability and balance during walking. In this study, a new robot-supported exoskeleton system was used for gait and balance rehabilitation. This study is important as the first clinical study of a new walking system. The primary aim of the study was to evaluate the effect of the FreeGait® exoskeleton system (BAMA Technology, Ankara, Türkiye) on gait parameters in patients with motor incomplete spinal cord injury. The secondary aim was to assess its impact on quality of life and independence. Methods: Fourteen participants with incomplete spinal cord injury were included in the study. An average of 20.7 sessions of exoskeleton therapy was administered to the study group. Gait training was attempted to be diversified as much as possible during the exoskeleton training. 10MWT, Timed Up and Go Test (TUG), WISCI II, Berg Balance Scale (BBS), Visual Analogue Scale (VAS) for fear of falling, Spinal Cord Independence Measure (SCIM III), World Health Organization Quality of Life Scale-Short Form (WHOQOL - BREF) were used for evaluation. Results: WISCI II levels improved significantly in the study group (p = 0.031). Overground walking speed means calculated from 10MWT increased by 66%, twofold compared to the control group (p = 0.016, p = 0.063, respectively). The mobility subscale of SCIM III, the total SCIM III scores, and the WHOQOL-BREF physical health domain score increased significantly, contrary to the control group (p < 0.05). However, there was no difference in the mean change of all measurements between groups (p > 0.05). Conclusions: Gait training with the new exoskeleton system contributes to functional walking skills. It is possible that the residual motor learning ability, together with the balance and compensation mechanisms, played a role in the outcome. It is also important that this improvement in functional mobility is reflected in ADLs. It can be supposed that walking in different patterns, and speeds gives a way to simulate daily living conditions, which is the basis of the achievements in this study.

    Potential benefits

    Main benefits

    Standing/walking/mobility

    Additional benefits

    Arm/hand function

    General health

    Mental health and psychosocial factors

    Good to know: Potential benefits are defined as outcomes that are being measured during and/or after the trial.

    Wings for Life supports SCITrialsFinder

    Wings for Life has proudly initiated, led and funded the new version of the SCI Trials Finder website. Wings for Life aims to find a cure for spinal cord injuries. The not-for-profit foundation funds world-class scientific research and clinical trials around the globe.

    Learn more

    • Trial recruitment status
    • Ended
    • Trial start date
    • 1 Jan 2022
    • Organisation
    • Ankara City Hospital Bilkent
    • Trial recruitment status
    • Ended
    • Trial start date
    • 1 Jan 2022
    • Organisation
    • Ankara City Hospital Bilkent

    Wings for Life supports SCITrialsFinder

    Wings for Life has proudly initiated, led and funded the new version of the SCI Trials Finder website. Wings for Life aims to find a cure for spinal cord injuries. The not-for-profit foundation funds world-class scientific research and clinical trials around the globe.

    Learn more